US009471995B2

a2 United States Patent (10) Patent No.: US 9,471,995 B2
Laksono et al. 45) Date of Patent: Oct. 18, 2016
(54) CODEC ENGINE WITH INLINE IMAGE (58) Field of Classification Search
PROCESSING CPC GO6T 9/00; HO4N 19/85; HO4N 19/44;
] HO4N 19/42; HO4N 7/012; HO4N 19/59;
(71) Applicant: VIXS SYSTEMS INC., Toronto (CA) HO4N 19/40; GO9G 5/393; GO9G 5/363;
. . GO09G 5/39; GO9G 2360/08; GO09G 2350/00;
(72) Inventors: In(.ira Laksono, Richmond Hill (CA); GO9G 2320/0261; GO9G 2340/02
Eric Young, Markham (CA); See application file for complete search history.
Chun-Chin Yeh, Markham (CA) ’
(73) Assignee: VIXS Systems Inc., Toronto (CA) (6) References Cited
U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 6,295,089 Bl* 9/2001 Hoang 348/390.1
U.S.C. 154(b) by 64 days. 6,724,816 B1* 4/2004 Kim ctal. .. 375/240.03
7,113,203 B1* 9/2006 Wuetal ... 348/207.99
. 8,624,909 B2 1/2014 Laksono
(1) Appl. No.: 14/154,292 2006/0165181 AL* 7/2006 Kwan et al. 375/240.24
R 2007/0115294 A1* 5/2007 Laksono 345/582
(22) Filed: Jan. 14, 2014 2009/0304088 Al* 122009 Kodaka 375/240.25
2012/0170667 Al* 7/2012 Girardeau et al. 375/240.25
(65) Prior Publication Data 2013/0298026 Al* 11/2013 Fitzpatrick G11B 27/034
715/723
US 2015/0199789 A1 Jul. 16, 2015 2014/0355671 A1* 12/2014 Pengcocccoo..... HO4N 19/115
375/240.03
(51) Imt.CL . .
GOGT 900 (2006.01) cited by examiner
IG{g;tg 57;?; 888288 Primary Examiner — Maurice L McDowell, Jr.
G09G 5/36 (2006.01)
G09G 3/393 (2006.01) 7 ABSTRACT
HO4N 19/44 (2014.01) A video device includes a codec engine to process video data
HO4N 19/42 (2014.01) to generate a stream of pixel blocks representing a picture of
HO4N 19/85 (2014.01) a sequence of pictures represented by the video data, an
HO4N 19/40 (2014.01) image processing module to receive the stream of pixel
HO4N 19/59 (2014.01) blocks via a local path between the codec engine and the
(52) US.CL image processing module and to perform at least one image
CPC ... GO6T 9/00 (2013.01); GOIG 5/363 processing function for the picture using pixel blocks of the

(2013.01); GO9G 5/39 (2013.01); GO9G 5/393 stream of pixel blocks received via the local path to generate
(2013.01); HO4N 7/012 (2013.01); HO4N image processing result data representative of the picture.
19742 (2014.11); HO4N 19/44 (2014.11); The video device further includes a storage interface couple-
HO4N 19/85 (2014.11); GO9G 2320/0261 able to a storage component, the storage interface to provide
(2013.01); GO9G 2340/02 (2013.01); GOIG the image processing result data for storage at the storage

2350/00 (2013.01); GO9G 2360/08 (2013.01); component.

G09G 2360/121 (2013.01); HO4N 19/40
(2014.11); HO4N 19/59 (2014.11) 8 Claims, 4 Drawing Sheets

100
_\ 12

120

INFUT VIDEG
DATA 1

"108
126

!

PROCESSED
VIDED DATA
™ CACHE
18

< b
IMAGE PROCESSING
HMODULE 2 ‘)

104

)

108

RESULT DATA
iR

IF VPULL

—HR

STORAGE COMPONENT
3

US 9,471,995 B2

Sheet 1 of 4

Oct. 18, 2016

U.S. Patent

801

74

| vivaozaia
| G3ss3008d

&
AMOWIN

B ERTE

g7

ININOINOD F0VHDIS

bOL NdA

901

\YLVa LTINS

419

yCL
ERilueld]

ONISSI0U OV

v

A

w3
o

L viva

Y

Zhl

{0

| 030A LNdNI

US 9,471,995 B2

Sheet 2 of 4

Oct. 18, 2016

U.S. Patent

STANLO FHOW HO INC O YIVD
LTINS ONISSI0Hd IDVINI SEI00Ud

~21E

OO

X

N

d0VH0LE
HSIHAGONIWIHOYD LY ¥ivd w012
LINS3 ONISSI00H 309N 6013

A

U208 13 ONIST NOLLONR

ONISSIO0YD I0VNI WeO4u3d | B

&

¥I078 TEXId SSIOOVAATOI gz

FINAON ONISSIO0Ud OVl LY

[

&z

Hivd OO viA ZNA0H DNISSI0CUd
YT OL 2018 13Xd 3AAOYd

3 H20TE
LX3N

H2078 13
FLYHINTO 0L vivd O3UA 553008

&

INIONT 03000 LY

US 9,471,995 B2

Sheet 3 of 4

Oct. 18, 2016

a TRY ;
AMOWIN WIE N
a%wm_w IINCOW
ONISSAT0NA FOVR

[

IHOVD

2
VA% Y1va
IHNL0N mHE H® - L JUNLOK
4300030 (FEHE A J3005 GIA00NT

»///@Nm AN

U.S. Patent

US 9,471,995 B2

Sheet 4 of 4

Oct. 18, 2016

U.S. Patent

Gil
AHOHIW

¥y
OB}

ALIINIA

q303130 |

iy

AL
(J3a023d

% E0T NdA
FINGOW »
NOILOZLIA ALLNIAH
5
IHOVD
. -
755 VAV o
FHNLYE4 WOV ONISSI00Y IDVAI
B
Pl ho
m.w |||||||||||||||| aYa i -Nlﬁ.\nwlwﬁl
{ oo H 5w o 3000

£

»//,/QE

LARAY
AN

{__Q3000NT

Dev

US 9,471,995 B2

1
CODEC ENGINE WITH INLINE IMAGE
PROCESSING

FIELD OF THE DISCLOSURE

The present disclosure generally relates to video systems
and more particularly to video encoding/decoding systems
and image processing systems.

BACKGROUND

Many video systems employ image processing capabili-
ties, such as scaling, deinterlacing, and the like, for video
processed by the video system. Typically, a video processing
system encodes, decodes, or transcodes the video data and
stores the resulting video data in system memory. The video
data is then subsequently accessed from the system memory
for image processing. This approach thus consumes consid-
erable memory bandwidth as the video data is pulled from
the system memory for processing, as well as introduces
considerable latency in completing the image processing.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.

FIG. 1 is a block diagram of a video system providing
inline image processing in accordance with at least one
embodiment of the present disclosure.

FIG. 2 is a flow diagram illustrating a method of provid-
ing inline image processing in accordance with at least one
embodiment of the present disclosure.

FIG. 3 is a block diagram illustrating an example of
providing inline image processing of video data to generate
image processing result data in the form of a modified
representation of the video data in accordance with at least
one embodiments of the present disclosure.

FIG. 4 is a block diagram illustrating an example of
providing inline image processing of video data to generate
image processing result data in the form of metadata repre-
senting analyzed characteristics of the video data in accor-
dance with at least one embodiments of the present disclo-
sure.

DETAILED DESCRIPTION

FIGS. 1-4 illustrate example techniques for performing
one or more image processing functions on video data as it
is being encoded, decoded, or transcoded at a video pro-
cessing unit. While a picture in a sequence of pictures of a
video stream is being processed by a coding/decoding
(codec) engine, at some point blocks of pixels (hereinafter,
“pixel blocks™) of the picture are generated or otherwise
processed by a component of the codec engine. For decoding
operations, encoded video data is decoded to generate a
stream of sets of pixel blocks, whereby each set of pixel
blocks together represents a corresponding picture of the
sequence of pictures. For encoding operations, each picture
of the sequence typically is deconstructed into a set of pixel
blocks, which are then processed to generate resulting
encoded picture. As disclosed herein, a video processing unit
(VPU) takes advantage of the presence of these pixel blocks
to perform one or more image processing functions using the
pixel blocks as they are generated by the codec engine. In at
least one embodiment, as pixel blocks are generated, the
codec engine of the VPU provides the pixel blocks to an

10

15

20

25

30

35

40

45

50

55

60

65

2

image processing module of the VPU via a local path of the
VPU. The term “local path”, as used herein, refers to a
signaling path maintained exclusively within the die or
integrated circuit (IC) package implementing the VPU. In
implementations whereby the codec engine and the image
processing module are implemented as separate hardware
modules within the VPU, the local path can comprise an
on-chip bus connecting the codec engine and the image
processing module, a buffer, cache or other temporary
storage component, or a combination thereof. In implemen-
tations whereby the codec engine and the image processing
module are implemented as one or more processors of the
VPU executing software, the local path can include a buffer,
cache, or other storage component of the VPU that is
accessible to both the codec software and the image pro-
cessing software. The image processing module then may
perform one or more image processing functions using the
received pixel blocks to generate image processing result
data for the picture, or for a set of pictures.

The image processing functions can include image modi-
fication functions that generate modified versions of the
picture, such as scaling functions, deinterlacing functions,
noise-reduction functions, rotation functions, image vector-
ization functions, gamma correction functions, and the like.
In other embodiments, the image processing functions can
include image analysis functions that generate image meta-
data describing one or more analyzed characteristics of the
picture or a set of pictures. For example, an image analysis
function can be performed to determine motion compensa-
tion metadata between a picture and a preceding picture. As
other examples, image analysis functions can include facial
feature detection processing for generating facial feature
metadata, determination of the dominant color of each pixel
block to generate dominant color metadata, and the like. The
image processing result data, as metadata or a modified
version of the picture, may be stored with the processed
video data generated by the coded engine, or may be stored
separately in a different storage component. The image
processing result data then may be accessed and used by
another component of the VPU or by another system in
relation to the processed video data. For ease of reference,
this technique of concurrent image processing while coding
video data is referred to herein as “inline image processing”
due to the inline integration of the image processing module
with the codec engine.

By using the pixel blocks as they are generated by the
codec engine and in a manner that does not require prior
storage of the pixel blocks in an off-chip memory, the image
processing module can more efficiently provide image pro-
cessing capabilities than conventional image processing
systems that operate on video data once it has been stored in
off-chip memory, and thus requiring considerable memory
bandwidth to access it from the off-chip memory. Moreover,
in certain implementations the image processing functions
can be performed on a pixel-block-by-pixel-block basis, and
thus permit completion of the image processing of a picture
near the same time that the codec engine has finished
processing the picture, thereby providing reduced image
processing latency compared to conventional techniques
that rely on completion of the processing of the picture
before starting the image processing of the picture.

FIG. 1 illustrates an example video system 100 imple-
menting inline image processing in accordance with at least
one embodiment of the present disclosure. In the depicted
example, the video system 100 includes a video processing
unit (VPU) 101 implementing an encoder/decoder (codec)
engine 102 and an image processing module 104 coupled via

US 9,471,995 B2

3

a local path 106 of the VPU 101. The codec engine 102 and
image processing module 104 each may be implemented
entirely in hard-coded logic (that is, hardware), as a com-
bination of software 108 stored in a non-transitory computer
readable storage medium (e.g., an off-chip, or system,
memory 110) and one or more processors to access and
execute the software, or as combination of hard-coded logic
and software-executed functionality with one or more pro-
Cessors.

To illustrate, in one embodiment, the video system 100
implements a the VPU 101 as system on a chip (SOC),
multichip module (MCM), or other integrated circuit (IC)
package 112 whereby portions of the codec engine 102 and
image processing module 104 are implemented as hardware
logic, and other portions are implemented via firmware (one
embodiment of the software 108) stored at the IC package
112 and executed by one or more processors of the IC
package 112. Such processors can include a central process-
ing unit (CPU), a graphics processing unit (GPU), a micro-
controller, a digital signal processor, a field programmable
gate array, programmable logic device, state machine, logic
circuitry, analog circuitry, digital circuitry, or any device that
manipulates signals (analog and/or digital) based on opera-
tional instructions that are stored in the memory 110 or other
non-transitory computer readable storage medium. To illus-
trate, the codec engine 102 and image processing module
104 may be implemented as, for example, a CPU executing
video decoding software and image processing software.

The non-transitory computer readable storage medium
storing such software can include, for example, a hard disk
drive or other disk drive, read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that
when the processing module implements one or more of its
functions via a state machine, analog circuitry, digital cir-
cuitry, and/or logic circuitry, the memory storing the corre-
sponding operational instructions may be embedded within,
or external to, the circuitry comprising the state machine,
analog circuitry, digital circuitry, and/or logic circuitry.

The local path 106 comprises a signaling path within the
VPU 101; that is, the local path 106 does not route through
a component external to the IC package 112 of the VPU 101,
such as the memory 110. In implementations whereby the
codec engine 102 and the image processing module 104 are
separate hardware components, the local path 106 can
include, for example, an on-chip bus 114 directly coupling
the codec engine 102 and the image processing module 104.
Alternatively, the local path 106 can include an on-chip
storage component 116 coupled to the codec engine 102 and
the image processing module 104. This storage component
116 can include a register file, buffer, cache, and the like. For
ease of illustration, an example implementation of the stor-
age component 116 as a cache is described below, and thus
the storage component 116 is also referred to below as
“cache 1167, and thus the term “cache” refers to any of a
variety of storage structures used to temporarily store such
data.

As a general operational overview, the codec engine 102
receives input video data 120 from a storage device or
networked device and, depending on the implementation,
encodes, decodes, or transcodes the input video data 120 to
generate processed video data 122, which is then provided
to a memory interface 124 of the VPU 101 for storage at the
memory 110 or other external storage device. While in the
process of encoding/decoding/transcoding the input video
data 120, the codec engine 102 generates a stream 126 of

20

40

45

55

4

pixel blocks (e.g., pixel blocks 128, 129, 130) for each
picture of a sequence of pictures represented by the input
video data. In an encoding implementation, each picture is
received in unencoded form, and thus the codec engine 102
generates these pixel blocks for the picture by segmenting
the picture into a set of pixel blocks and then processing the
pixel blocks to generate the encoded video data. For
example, the Motion Pictures Experts Group (MPEG) fam-
ily of standards provides for a picture to be decomposed into
a set of macroblocks, with each macroblock comprising, for
example, 16x16 pixels from the picture. As such, each pixel
block may be composed of a corresponding one of these
macroblocks, as a partial or full row of these macroblocks,
as a partial or full column of these macroblocks, as a tile of
two or more macroblocks, and the like.

In a decoding implementation, the encoded video data
(one embodiment of the input video data 120) includes
sequences of intracoded frames (I frames), predictive coded
frames (P frames), and bi-predictive coded frames (B
frames). The I frames comprise complete picture informa-
tion for a corresponding picture, and are represented as sets
of pixel blocks. Accordingly, for I frames the codec engine
102 can generate the pixel blocks of the stream 126 for the
corresponding picture while parsing the pixel blocks of an |
frame representing the picture from the input video data 120.
In other embodiments, the codec engine 102 generates the
pixel blocks of the stream 126 for a picture after decoding
a P frame or B frame that represents the picture. Thus, while
FIG. 1 illustrates the stream 126 of pixel blocks being output
to the memory interface 124 for storage at an external
storage device, in some implementations the generation of
the stream 126 of pixel blocks may be only an intermediate
step in the processing performed by the codec engine 102
and thus the stream 126 of pixel blocks may not be output
for external storage device, but rather an encoded or pro-
cessed version of the image content represented by these
pixel blocks may instead may be output for storage to an
external storage device. As such, the cache 116 may com-
prise an internal buffer of the codec engine 102 used during
an intermediary process, and which also may be accessed by
the image processing module 104 to obtain copies of the
pixel blocks stored therein.

As each pixel block of the stream 126 is generated for a
picture, the codec engine 102 provides the pixel block to the
image processing module 104 for processing via the local
path 106. Depending on implementation, the pixel block
may be provided directly between the codec engine 102 and
the image processing module 104 via the on-chip bus 114 or
the pixel block may be temporarily stored in the cache 116
before being accessed by the image processing module 104.
In at least one embodiment, the image processing module
104 performs one or more image processing functions using
one or more of the pixel blocks of the picture as they are
received from the codec engine 102 via the local path 106.
The results of the performance of the one or more image
processing functions on the pixel blocks is provided as
image processing result data 132, which may be stored
locally (e.g., in the cache 116 or in a separate on-chip storage
component) or provided to a storage interface 134 for
storage in a storage component 136 external to the VPU 101,
such as a hard disc drive, solid state drive, off-chip memory,
and the like. In some embodiments, the storage component
136 comprises the memory 110. To illustrate, the image
processing result data 132 for a picture may be stored with,
or otherwise in association with, the corresponding pro-
cessed video data 122 for the picture in the memory 110.

US 9,471,995 B2

5

In some embodiments, the image processing function
performed by the image processing module 104 comprises
an image modification function and the image processing
result data 132 therefore comprises a modified representa-
tion of the picture. To illustrate, the image modification
function can include, for example, a scaling function
whereby each pixel block of the picture is scaled as it is
received from the codec engine 102, with the end result of
producing a scaled version of the picture (one embodiment
of the image processing result data 132). As another
example, the picture may comprise an interlaced picture and
the image modification function can include, for example, a
deinterlacing function whereby each pixel block of the
picture is deinterlaced with the end result of producing a
deinterlaced version of the picture. Other examples include
a rotate function to rotate each pixel block to generate a
rotated version of the picture, a gamma correction function
to generate a gamma corrected version of the picture, and the
like. In other embodiments, the image processing function
performed by the image processing module 104 comprises
an image analysis function and the image processing result
data 132 comprises image metadata representing one or
more analyzed characteristics of the pixel blocks of the
picture. For example, the image analysis function can
include, for example, evaluation of the dominant color of
each pixel block as it is received, and the image processing
result data 132 therefore can include metadata comprising,
for each pixel block of the picture, a value representing the
dominant color of the pixel block. Similarly, the image
analysis function can include a variance calculation to
determine the variance (VAR) of each pixel block as it is
received from the codec engine 102, and the resulting image
processing result data 132 therefore can include metadata
comprising, for each pixel block of the picture, a value
representing the variance of the pixel block. As another
example, the image analysis function can include a motion
search or motion compensation process that determines a
motion vector for a received pixel block of a picture relative
to a previous picture in the sequence of pictures, and the
resulting motion search data can be stored as image pro-
cessing result data 132 for the picture. Another example
image analysis function is a facial feature detection process
that analyzes each pixel block as it is received to detect
whether a facial feature is present, and the resulting facial
feature metadata is stored as the image processing result data
132. An optical character recognition (OCR) process like-
wise can be performed and the resulting recognized char-
acter metadata stored as the image processing result data.

The image processing result data 132 may have any of a
variety of applications. For example, gesture recognition
metadata may be used by an application to identify certain
gestures present in the video content of the processed video
data 122, and process the video content accordingly, or the
facial feature metadata may be used by an application to
identify the presence of certain individuals in the video
content of the processed video data. As another example, the
scaled-down representation of a picture generated by the
image processing module 104 may be stored with the picture
in the memory 110, and accessed and used for scaled motion
search (SMS) during an subsequent encoding of the picture,
thereby avoiding the need to scale-down the picture for SMS
during the encoding process as a scaled-down version is
already available.

FIG. 2 illustrates an example method 200 of inline image
processing in the video system 100 of FIG. 1 in accordance
with at least one embodiment of the present disclosure. As
noted above, the video system 100 operates to encode/

10

15

20

25

30

35

40

45

50

55

60

65

6

decode/transcode pictures of the input video data 120 to
generate processed video data 122 for storage in the memory
110, while concurrently performing one or more image
processing functions using the pixel blocks generated for the
picture during the encoding/decoding/transcoding process.
Method 200 illustrates this process for a single picture of the
input video data 120, and thus the method 200 may be
repeated for each picture of the sequence of pictures repre-
sented by the input video data 120.

The method 200 initiates with the codec engine 102
triggers an encoding/decoding/transcoding process for a
picture of the input video data 120. As part of this process,
at method block 202 the codec engine 102 generates a pixel
block for the picture. The pixel block may be generated as
a final product to be output from the codec engine 102 for
storage at the memory 110 (e.g., as part of a decoded
picture), or the pixel block may be generated as an inter-
mediate step in the processing performed by the codec
engine 102 (e.g., the segmentation of a picture to be encoded
into a matrix of macroblocks). At method block 204, the
codec engine 102 provides the pixel block to the image
processing module 104 via the local path 106. As noted
above, the provision of the pixel block can include direct
transfer of a copy of the pixel block via the on-chip bus 114
or the temporary storage of the pixel block in the cache 116,
whereupon a copy can be accessed by the image processing
module 104. The process of method blocks 202 and 204
repeats for each pixel block generated by the codec engine
102, and then repeats for the next picture in the sequence.

In response to the provision of a pixel block, the image
processing module 104, at method block 206 accesses or
otherwise receives the provided pixel block. As noted above,
the pixel block can be received via the on-chip bus 114, or
the image processing module 104 can access the pixel block
from the cache 116. At method block 208, the image
processing module 104 performs an image processing func-
tion using the received pixel block to generate image pro-
cessing result data 132 for the pixel block. As noted above,
this image processing function can include an image modi-
fication function, such as a scaling, deinterlacing, or rotation
function, and the resulting image processing result data 132
can comprise a modified version of the pixel block. In other
embodiments, the image processing function can include an
image analysis function, such as a motion search analysis, a
feature recognition analysis, a dominant color analysis, a
variance analysis, and the like, the resulting image process-
ing result data 132 can comprise metadata representing the
results of the analysis.

In some embodiments, the image processing function can
be performed on each pixel block independently. In other
embodiments, the image processing function may require
processing a set of pixel blocks together or require com-
parison or analysis of the pixel block relative to one or more
pixel blocks of a previous picture (e.g., for a motion search).
In such cases, the image processing module 104 may use the
cache 116 or a separate cache to buffer multiple pixel blocks
for processing together.

At method block 210, the image processing module 104
provides the image processing result data 132 for the pixel
block to the storage interface 134 for storage in the storage
component 136. As noted above, the storage component 136
may comprise the memory 110, and thus the image process-
ing result data 132 for a picture may be stored together with
the processed video data 122 representing that picture. The
process of method blocks 206, 208, and 210 may be repeated
for the next pixel block provided by the codec engine 102 for

US 9,471,995 B2

7

the picture, and likewise may be repeated for the processing
of the next picture of the sequence.

At some point, the image processing result data 132
generated for one or more pictures of the sequence is
processed at method block 212 by the video system 100 or
by another system. The processing performed using the
image processing result data 132 depends on the form of the
image processing result data 132. As noted above, the image
processing result data 132 can include, for example, meta-
data identifying motion search information and thus be used
for encoding the processed video data 122 or for gesture
recognition in the video content of the processed video data
122. As another example, the image processing result data
132 may comprise facial feature metadata that may be used
by an application to identify one or more individuals present
in the video content, OCR metadata that may be used by an
application to identify the textual context of one or more
scenes of the video content, and the like.

As the description of method 200 above illustrates, there
is tight integration between the codec engine 102 and the
image processing module 104 in that as each pixel block is
generated, it is quickly available to the image processing
module 104 via the local path 106 for use in performing
image processing functions. As encoding or decoding of a
picture and the image processing of the picture proceed in
parallel, the image processing is completed much earlier,
and thus the image processing result data is available for use
much earlier, than conventional systems that require
completion of the processing of the picture by the codec
engine and storage of the processed picture in external
memory before beginning image processing of the picture.
Moreover, by providing the pixel blocks via a local path that
does not route through an external memory or otherwise
route outside the video processing unit 101, the inline image
processing technique of method 200 significantly reduces or
eliminates considerable memory bandwidth consumption
that otherwise would be required for the image processing of
the picture.

FIGS. 3 and 4 illustrate example implementations of the
video system 100 using the method 200 in accordance with
at least one embodiment of the present disclosure. Specifi-
cally, FIG. 3 illustrates an example implementation whereby
the image processing module 104 implements a scaling
function to generate scaled representations of pictures in the
picture sequence represented by the input video data. Simi-
lar implementations may be used for other image processing
functions that generate a modified version of the picture at
issue, such as deinterlacing functions, gamma correction
functions, picture rotation functions, and the like. In the
depicted example of FIG. 3, encoded picture data 320 (one
embodiment of the input video data 120, FIG. 1) is received
by the codec engine 102 and decoded by the codec engine
102 to generate a decoded picture 322 (one embodiment of
processed video data 122, FIG. 1) that is stored in the
memory 110. As part of the decoding process, the codec
engine 102 generates a stream 326 of pixel blocks for the
picture (e.g., pixel blocks 328, 329, 330), and as each pixel
block is generated by the codec engine 102, it is stored in the
cache 116. The image processing module 104 then accesses
each pixel block from the cache 116 in turn, and scales the
pixel block to generate a scaled pixel block (e.g., scaled
pixel blocks 338, 339, 340 corresponding to pixel blocks
328, 329, and 330), which is stored with the other scaled
pixel blocks similarly generated for the other pixel blocks of
the pixel as a scaled image 332 (one embodiment of the
image processing result data 132, FIG. 1) in the memory
110. Thus, as demonstrated by this example, a scaled (up-

10

15

20

25

30

35

40

45

50

55

60

65

8

scaled or downscaled) version of a decoded picture can be
created and completed nearly simultancously with the
completion of the decoding of the picture, and in a manner
that does not require accessing an external memory during
the scaling process.

FIG. 4 illustrates an example implementation whereby the
image processing module 104 implements a facial feature
detection function to generate facial feature metadata for
each picture in the picture sequence represented by input
video data. Similar implementations may be used for other
image analysis functions that generate metadata represent-
ing one or more characteristics identified in the picture at
issue, such as motion detection functions (e.g., for subse-
quent gesture recognition applications), dominant color
analysis, variance analysis, vectorization, and the like. In the
depicted example of FIG. 4, encoded picture data 420 (one
embodiment of the input video data 120, FIG. 1) is received
by the codec engine 102 and decoded by the codec engine
102 to generate a decoded picture 422 (one embodiment of
processed video data 122, FIG. 1) that is stored in the
memory 110. As part of the decoding process, the codec
engine 102 generates a stream 426 of pixel blocks for the
picture (e.g., pixel blocks 428, 429, 430), and as each pixel
block is generated by the codec engine 102, a copy is
provided to the image processing module 104 via the
on-chip bus 114. Upon receipt of an pixel block from the
codec engine 102, the image processing module 104 ana-
lyzes the pixel block to detect whether any facial features are
present in the pixel block using any of a variety of well-
known facial feature detection algorithms, and generates
facial feature metadata 432 (one embodiment of the image
processing result data 132, FIG. 1) representing the charac-
teristics of facial features, if any, detected in the pixel block.
In the depicted example, the image processing module 104
stores the facial feature metadata 432 in a separate on-chip
cache 446, which is also accessible by a facial detection
module 405.

As facial feature metadata 432 for a picture is stored to the
cache 446, the facial detection module 405 compares the
facial features represented in this metadata to corresponding
facial features in an identity database (not shown) that
contains facial feature descriptions for a set of persons of
interest. In the event that a sufficient match is found between
facial features identified in the picture and a corresponding
person, the facial detection module 405 generates detected
identity information 434 pertaining to the identified person
and an identifier of the picture(s) in which the identified
person appears in the picture sequence (e.g., using time-
stamps) and stores this information in the memory 110. The
detected identify information 434 then may be used, for
example, by law enforcement to identify persons of interest
in the recorded video represented by the encoded picture
data 420, or to permit rapid identification of the appearance
times of certain persons within the video content.

In some embodiments, certain aspects of the techniques
described above may implemented by one or more proces-
sors of a processing system executing software. The soft-
ware comprises one or more sets of executable instructions
stored or otherwise tangibly embodied on a non-transitory
computer readable storage medium. The software can
include the instructions and certain data that, when executed
by the one or more processors, manipulate the one or more
processors to perform one or more aspects of the techniques
described above. The non-transitory computer readable stor-
age medium can include, for example, a magnetic or optical
disk storage device, solid state storage devices such as Flash
memory, a cache, random access memory (RAM) or other

US 9,471,995 B2

9

non-volatile memory device or devices, and the like. The
executable instructions stored on the non-transitory com-
puter readable storage medium may be in source code,
assembly language code, object code, or other instruction
format that is interpreted or otherwise executable by one or
more Processors.

In this document, relational terms such as “first” and
“second”, and the like, may be used solely to distinguish one
entity or action from another entity or action without nec-
essarily requiring or implying any actual relationship or
order between such entities or actions or any actual rela-
tionship or order between such entities and claimed ele-
ments. The term “another”, as used herein, is defined as at
least a second or more. The terms “including”, “having”, or
any variation thereof, as used herein, are defined as com-
prising.

Other embodiments, uses, and advantages of the disclo-
sure will be apparent to those skilled in the art from
consideration of the specification and practice of the disclo-
sure disclosed herein. The specification and drawings should
be considered as examples only, and the scope of the
disclosure is accordingly intended to be limited only by the
following claims and equivalents thereof.

Note that not all of the activities or elements described
above in the general description are required, that a portion
of a specific activity or device may not be required, and that
one or more further activities may be performed, or elements
included, in addition to those described. Still further, the
order in which activities are listed are not necessarily the
order in which they are performed.

Also, the concepts have been described with reference to
specific embodiments. However, one of ordinary skill in the
art appreciates that various modifications and changes can
be made without departing from the scope of the present
disclosure as set forth in the claims below. Accordingly, the
specification and figures are to be regarded in an illustrative
rather than a restrictive sense, and all such modifications are
intended to be included within the scope of the present
disclosure.

Benefits, other advantages, and solutions to problems
have been described above with regard to specific embodi-
ments. However, the benefits, advantages, solutions to prob-
lems, and any feature(s) that may cause any benefit, advan-
tage, or solution to occur or become more pronounced are
not to be construed as a critical, required, or essential feature
of any or all the claims.

What is claimed is:
1. A video device comprising:
a die implementing:

a codec engine to process video data to generate a
stream of pixel blocks during transcoding of the
video data by the codec engine, the stream of pixel
blocks representing a picture of a sequence of pic-
tures represented by the video data; and

an image processing module to receive the stream of
pixel blocks via a local path of the die between the
codec engine and the image processing module and

10

20

25

30

35

40

45

50

55

10

to perform at least one image analysis function using
pixel blocks of the stream of pixel blocks received
via the local path to generate image metadata
describing one or more analyzed characteristics of
the picture, wherein the image processing module
performs the at least one image analysis function in
parallel with the codec engine generating the stream
of pixel blocks; and

a storage interface coupleable to a storage component, the
storage interface to provide the image metadata for
storage at the storage component.

2. The video device of claim 1, wherein the local path

comprises:

a first cache having an input coupled to an output of the
codec engine and an output coupled to the image
processing module, the first cache to temporarily store
a subset of pixel blocks of the stream of pixel blocks.

3. The video device of claim 1, wherein the local path
comprises:

an on-chip bus connecting the codec engine and the image
processing module.

4. The video device of claim 1, further comprising:

a memory interface coupleable to a memory external to
the die, the memory interface to provide the stream of
pixel blocks for storage at the memory.

5. The video device of claim 4, wherein:

the storage component comprises the memory external to
the die.

6. A method comprising:

processing video data at a codec engine of a die of a video
device to generate a stream of pixel blocks during
transcoding of the video data, the stream of pixel blocks
representing a picture of a sequence of pictures repre-
sented by the video data;

providing the stream of pixel blocks to an image process-
ing module of the die of the video device via a local
path of the die between the codec engine and the image
processing module;

performing an image analysis function at the image
processing module using pixel blocks received via the
local path to generate image metadata describing one or
more analyzed characteristics of the picture, wherein
the image processing module performs the image
analysis function in parallel with the codec engine
generating the stream of pixel blocks; and

storing the image metadata at a storage component.

7. The method of claim 6, further comprising:

storing the stream of pixel blocks at the storage compo-
nent in association with the image metadata.

8. The method of claim 6, wherein providing the stream
of pixel blocks to the image processing module via a local
path comprises one of: temporarily storing pixel blocks of
the stream at a cache accessible by the image processing
module; and providing the stream of pixel blocks to the
image processing module via an on-chip bus connecting the
codec engine and the image processing module.

#* #* #* #* #*

